
ParaCOSM: A Parallel Framework for Continuous Subgraph
Matching

Haibin Lai
Southern University of Science and Technology

Shenzhen, China
12211612@mail.sustech.edu.cn

Sicheng Zhou
Southern University of Science and Technology

Shenzhen, China
zhousc2021@mail.sustech.edu.cn

Site Fan
Southern University of Science and Technology

Shenzhen, China
fanst2021@mail.sustech.edu.cn

Zhuozhao Li∗
Southern University of Science and Technology

Shenzhen, China
lizz@sustech.edu.cn

Abstract

Continuous Subgraph Matching (CSM) has been widely studied, yet
most single-threaded algorithms struggle with large query graphs.
Existing CSM algorithms on CPU suffer from load imbalance in
searching and sequential updates to the index structure.

In this paper, we present ParaCOSM (Parallel COntinuous
Subgraph Matching), an efficient parallel framework for existing
CSM algorithms on CPU. ParaCOSM leverages two levels of paral-
lelism: inner-update parallelism and inter-update parallelism. Inner-
update parallelism uses a fine-grain parallelism approach to decom-
pose the search tree during each CSM query, enabling efficient
search for large queries under load balancing. In inter-update paral-
lelism, we introduce an innovative safe-update mechanism that uses
multi-threading to verify the safety of multiple updates, thereby en-
hancing the overall throughput of the system under large-scale up-
date scenarios. ParaCOSM achieves 1.2× to 30.2× speedups across
datasets and up to two orders of magnitude faster execution, with
up to 71% higher success rates on large query graphs.

Keywords

Continuous Subgraph Matching, Parallel Computing, Graph Algo-
rithms, Dynamic Graphs, Real-time Analysis

ACM Reference Format:

Haibin Lai, Sicheng Zhou, Site Fan, and Zhuozhao Li. 2025. ParaCOSM: A
Parallel Framework for Continuous Subgraph Matching. In 54th Interna-
tional Conference on Parallel Processing (ICPP ’25), September 08–11, 2025,
San Diego, CA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3754598.3754603

1 Introduction

Subgraphmatching (SM) aims to find all instances of a query pattern
𝑄 within a data graph 𝐺 [34], and is widely used in social network
analysis [17] and bioinformatics [5]. While significant progress has
been made in subgraph matching over static graphs [19, 27, 31],

∗Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICPP ’25, San Diego, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2074-1/25/09
https://doi.org/10.1145/3754598.3754603

many real-world applications, such as patternmatching for financial
risk control [33] and recommendation systems [11] involve evolving
data, leading to the need for continuous subgraph matching (CSM).

CSM focuses on detecting newly emerged or expired matches
as the graph evolves [26]. As illustrated in Figure 1, given a query
graph 𝑄 , a dynamic data graph 𝐺 , and a graph update stream ΔG,
CSM incrementally identifies matches of𝑄 within𝐺 in response to
each update Δ𝐺 ∈ ΔG.

(d) Delete

B

B

A

A

C

A

A B

A

C

B B

B

A

A

C

A B

B

A

A

C

A

(a) Query Graph (b) Data Graph (c) Insert

Figure 1: Running example of continuous subgraphmatching

As summarized in Table 1, many CSM algorithms follow a com-
mon two-stage process: i) updating the data graph and auxiliary
structures to prune the search space and construct a search tree; ii)
traversing this search tree to find matching embeddings.

Table 1: Existing CSM solutions in recent research. Para: Par-

allelism. Srch: search method (✓ = backtrack, ✗ = join-based).

System Para index A update Find Matches Srch

CPU Algorithms

IncIsoMatch [9] ✗ Recomputation N/A ✓

SJ-Tree [6] ✓ 𝑂 (|𝐸 (𝐺) | |𝐸 (𝑄) |) 𝑂 (|𝐸 (𝐺) | |𝐸 (𝑄) |) ✗

Graphflow [15] ✓ O(1) 𝑂 (𝑑 (𝐺) |𝑉 (𝑄) |) ✗

TurboFlux [16] ✗ 𝑂 (|𝐸 (𝐺) | |𝑉 (𝑄) |) 𝑂 (𝑑 (𝐺) |𝑉 (𝑄) |) ✓

IEDyn [14] ✗ 𝑂 (|𝐸 (𝐺) | |𝑉 (𝑄) |) 𝑂 (𝑑 (𝐺) |𝑉 (𝑄) |) ✓

Symbi [20] ✗ 𝑂 (|𝐸 (𝐺) | |𝐸 (𝑄) |) 𝑂 (𝑑 (𝐺) |𝑉 (𝑄) |) ✓

RapidFlow [25] ✓1 𝑂 (|𝐸 (𝐺) | |𝐸 (𝑄) |) 𝑂 (𝑑 (𝐺) |𝑉 (𝑄) |) ✓

Mnemonic [1] ✓ O(1) 𝑂 (𝑑 (𝐺) |𝑉 (𝑄) |) ✓

CaLiG [32] ✗ 𝑂 (|𝐸 (𝐺) | |𝐸 (𝑄) |) 𝑂 (|𝑉 (𝐺) |𝐾)2 ✓

NewSP [18] ✗ O(1) 𝑂 (𝑑 (𝐺) |𝑉 (𝑄) |) ✓

GPU Algorithms

GAMMA [23] ✓ O(1) 𝑂 (𝑑 (𝐺)𝑉 (𝑄)−1
𝑑 (𝑄) log(𝑉)) ✗

GCSM [30] ✓ N/A N/A ✗
1RapidFlow has been parallelized in [30].
2 𝐾 is the number of kernel vertices.

https://orcid.org/0009-0003-1870-783X
https://orcid.org/0009-0000-9991-5136
https://orcid.org/0009-0001-4507-8026
https://orcid.org/0000-0003-1903-6428
https://doi.org/10.1145/3754598.3754603
https://doi.org/10.1145/3754598.3754603
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3754598.3754603

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Haibin Lai, Sicheng Zhou, Site Fan, and Zhuozhao Li

Although many efficient CSM algorithms have been proposed,
most are implemented in a single-threaded fashion, which limits
their scalability on large and dynamic graphs. While Mnemonic [1]
introduces coarse-grained parallelism at the batch level, it may
suffer from load imbalance. GPU-based solutions like GCSM [30]
incur high hardware costs and complex programming burdens.
Moreover, dynamic search trees and irregular graph topologies in
CSM make parallelization fundamentally more challenging than in
static subgraph matching. Additionally, most CSM algorithms rely
on auxiliary indexing structures for pruning, but these structures
typically do not support concurrent updates, which becomes a
performance bottleneck.

We identify two key opportunities to accelerate CSM algorithms.
First, parallel decomposition within a single graph update Δ𝐺 :
Since search tree exploration dominates the runtime of CSM, and
each node in the tree can be treated as an independent computation
unit, the search can be decomposed into parallel subtasks. Second,
parallel filtering across updates: Many real-world updates do
not affect query results. This observation enables the design of
efficient filtering strategies to safely parallelize update processing.

Based on these insights, we propose ParaCOSM, a general-
purpose framework that automatically parallelizes single-threaded
CSM algorithms. With minimal user input—specifically, a traversal
routine and a filtering rule—ParaCOSMmanages parallel execution
across both the search and update dimensions, accelerating CSM
without requiring modifications to the core algorithm logic.

ParaCOSM adopts a two-level parallelism strategy: i) Inner-
update parallelism exploits the structure of the search tree by de-
composing it into independent subtrees via BFS traversal. These are
enqueued into a concurrent task queue and dispatched to worker
threads, which execute local enumeration logic and dynamically
rebalance the workload. ii) Inter-update parallelism takes advantage
of the high proportion of safe updates—updates that do not affect
query matches. ParaCOSM introduces an update type classifier
(based on label, degree, and index filtering) with a batch executor
to process safe updates in parallel, while deferring unsafe updates
to sequential execution to guarantee correctness.

In summary, the key contributions of our work are as follows:

• We introduce ParaCOSM, a general-purpose parallel frame-
work that automatically parallelizes existing single-threaded
CSM algorithms via two-level parallelism.
• We propose inner-update parallelism, which decomposes
the dynamic search tree into independent subtrees, enabling
fine-grained parallel exploration without altering the core
logic of CSM algorithms.
• We present inter-update parallelism, which improves
throughput by processing safe updates in parallel through
an update type classifier and a batch executor.

Extensive experiments on real-world and synthetic datasets
demonstrate the effectiveness of ParaCOSM. Specifically, Para-
COSM achieves significant speedups ranging from 1.2× to 30.2×
across multiple datasets. When handling large query graphs, Para-
COSM reduces runtime by up to two orders of magnitude and im-
proves success rates by as much as 71%. It also exhibits strong scala-
bility, maintaining performance as the number of threads increases.
Furthermore, ParaCOSM demonstrates excellent load balancing

and filtering effectiveness, ensuring efficient resource utilization
throughout the matching process.

The rest of the paper is organized as follows. We formulate our
problem and review prior work in §2. §3 discusses the motivation,
challenges, and opportunities for parallelism. §4 details our system
design. §5 presents our performance evaluation. Finally, §6 covers
additional related works, and §7 concludes the paper.

2 Preliminaries

2.1 CSM Problem Definition

In this section, we present a formal definition of the CSM problem.
Commonly used notations are summarized in Table 2.

Table 2: Frequently used notations

Symbol Description

𝑔 A labeled undirected graph (𝑉 , 𝐸)
𝐺 Data graph
𝑄 Query graph
𝑉 (𝑔), 𝐸 (𝑔) Vertex set and edge set of graph 𝑔
𝐿𝑉 , 𝐿𝐸 Vertex and edge labeling functions, 𝐿 for short
Σ𝑉 , Σ𝐸 Vertex and edge label sets
𝑁 (𝑢) Neighbor set of vertex 𝑢
𝑑 (𝑢) Degree of vertex 𝑢
𝑀 A subgraph isomorphism mapping
M Set of matches of𝑄 in𝐺
ΔG Sequence of graph updates
Δ𝐺 A single graph update
ΔM Incremental matching result
T Search-Tree for each of the enumeration process
A Auxiliary data structure used during matching

Definition 2.1. Labeled Graph for CSM. Let 𝑔 = (𝑉 , 𝐸) be an
undirected graph, where 𝑉 is the set of vertices and 𝐸 is the set of
edges. Each vertex and edge is associated with a label through the
labeling functions 𝐿𝑉 : 𝑉 → Σ𝑉 and 𝐿𝐸 : 𝐸 → Σ𝐸 , respectively.
For convenience, we denote both mappings as 𝐿. For a vertex𝑢 ∈ 𝑉 ,
let 𝑁 (𝑢) be its set of neighbors, and 𝑑 (𝑢) = |𝑁 (𝑢) | its degree.

Definition 2.2. Subgraph Matching. Let 𝑄 denote the query
graph and 𝐺 the data graph. The subgraph matching task aims to
find all matchingsM of𝑄 in𝐺 . A match is a mapping𝑀 : 𝑉 (𝑄) →
𝑉 (𝐺) satisfying the following conditions:

(1) ∀𝑢 ∈ 𝑉 (𝑄), 𝐿(𝑢) = 𝐿(𝑀 (𝑢));
(2) ∀𝑒 (𝑢,𝑢′) ∈ 𝐸 (𝑄), 𝐿(𝑒 (𝑢,𝑢′)) = 𝐿(𝑒 (𝑀 (𝑢), 𝑀 (𝑢′)));
(3) ∀𝑒 (𝑢,𝑢′) ∈ 𝐸 (𝑄), 𝑒 (𝑀 (𝑢), 𝑀 (𝑢′)) ∈ 𝐸 (𝐺).

Example 2.1. The query graph 𝑄 and Data Graph 𝐺 in Fig-
ure 1 displays one scenario example. {(𝑢2, 𝑣1), (𝑢1, 𝑣3), (𝑢4, 𝑣0) ,
(𝑢0, 𝑣2), (𝑢3, 𝑣5)} is a match for 𝑄 and 𝐺 .

Definition 2.3. Graph Stream. We represent the evolution of
the data graph as a sequence of updates ΔG = (Δ𝐺1,Δ𝐺2, . . .),
where each Δ𝐺 is a single edge or node insertion or deletion: Δ𝐺 =

(+/−, 𝑒/𝑣). Applying Δ𝐺 to 𝐺 yields an updated graph 𝐺 ′. LetM
andM′ be the sets of matches of 𝑄 in 𝐺 and 𝐺 ′, respectively. The
set of incremental matches ΔM is defined as the difference between
M andM′.

ParaCOSM: A Parallel Framework for Continuous Subgraph Matching ICPP ’25, September 08–11, 2025, San Diego, CA, USA

Definition 2.4. CSM Problem Statement. Given a data graph
𝐺 , a query graph 𝑄 , and a sequence of updates ΔG, the goal of
CSM is to report the newly or expired matches ΔM for each update
Δ𝐺 ∈ ΔG.

Example 2.2. When the edge 𝑒 (𝑣4, 𝑣5) is inserted to 𝐺 in Fig-
ure 1, a positive match {(𝑢2, 𝑣1), (𝑢1, 𝑣3), (𝑢4, 𝑣0), (𝑢0, 𝑣4), (𝑢3, 𝑣5))}
occurs in 𝐺 ′. After that, 𝑒 (𝑣0, 𝑣4) is deleted from 𝐺 ′. A negative
match {(𝑢2, 𝑣1), (𝑢1, 𝑣3), (𝑢4, 𝑣0) , (𝑢0, 𝑣2), (𝑢3, 𝑣5)} disappears in
𝐺 ′′.

Definition 2.5. Compatible Set. Given a query graph 𝑄 and a
data graph 𝐺 , let 𝜙 : 𝑉 ′

𝑄
→ 𝑉 ′

𝐺
be a partial mapping from a subset

of query vertices 𝑉 ′
𝑄
⊂ 𝑉𝑄 to data vertices 𝑉 ′

𝐺
⊂ 𝑉𝐺 that satisfies

the matching constraints.
For a query vertex𝑢 ∈ 𝑉𝑄 \𝑉 ′𝑄 to be matched next, its compatible

set 𝐶 (𝑢, 𝜙) is defined as the set of all such feasible candidate 𝑣 ∈
𝑉𝐺 \𝑉 ′𝐺 .

2.2 General CSM Models

Most existing CSM algorithms follow a two-stage design, as illus-
trated in Figure 2 and Algorithm 1: offline and online stages.

In the offline stage, CSM algorithms preprocess the query graph
𝑄 by computing search indices and determining a matching order
(e.g., deciding which query vertex to match first for each incoming
update). Many algorithms [26] also construct an index or auxiliary
data structure A to assist in filtering candidate vertices or edges
during matching.

In the online stage, CSM algorithms process streaming updates
to the data graph. For each incoming edge insertion, the update
is first applied to the data graph, followed by an update to the
auxiliary structure A. The updated structure is then used to filter
vertices or edges and generate candidate sets relevant to the query,
which are subsequently used to identify potential matches.

Build Match
Orders

Preprocessing Initial Matching

Build index

Stream-Updating
Online

Process

Enumerate
Result

Offline
Process

Offline
Process

Stream Update Data
Graph

Update
index

Explore Search
Tree

Update

Figure 2: The general process of CSM algorithms.

Then, CSM algorithms trigger a local search process over an ab-
stract search tree T as Figure 3 shows. This search tree encodes the
matching state of the query graph, with the root node as the begin-
ning, and the first layer nodes corresponding to the updated vertices
(i.e., the source and target of the modified edge). The search pro-
ceeds as illustrated in the function Find_Matches in Algorithm 1:
starting from the root, it incrementally extends partial matches
toward the leaf nodes. Once a complete match is found at a leaf
node, the match count is incremented. After all possible search
paths have been explored, the processing of the current update is
considered complete.

In contrast, deletions are processed in reverse order: positive
matches are formed after insertions, whereas negative matches only

Algorithm 1: General CSM Framework
Input: data graph𝐺 , query graph𝑄 , update stream ΔG
Output: incremental matches ΔM for each update Δ𝐺 ∈ ΔG
/* Offline process */

A ← Build_ADS (𝐺,𝑄) ;
O ← Build_Match_Order(𝑄) ;
M0 ← Find_Initial_Matches(𝐺,𝑄,A) ;
/* Online process */

foreach Δ𝐺 ∈ ΔG do

if Δ𝐺.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is insertion then

𝐺 ← 𝐺 ∪ {𝑒 } ;
A ← Update_ADS (𝑄,A,Δ𝐺) ;
ΔM ← Find_Matches (Search_Tree(𝑒, O)) ;

else

ΔM ← Find_Matches (Search_Tree(𝑒, O)) ;
A ← Update_ADS (𝑄,A,Δ𝐺) ;
𝐺 ← 𝐺 \ {𝑒 } ;

Function Find_Matches(T):
ΔM ← ∅ ;
Function Traverse(𝑀):

if |𝑀 | = |𝑄 | then
ΔM ← ΔM ∪ {𝑀 }; return

𝑢 ← SelectNext(𝑄 \𝑀) ;
𝐶 (𝑢) ← Compatible_Set_Enum(𝑢,𝑀) ;
foreach 𝑣 ∈ 𝐶 (𝑢) where Valid(𝑢, 𝑣,𝑀) do

Traverse(𝑀 ∪ { (𝑢, 𝑣) }) ;

foreach task 𝑡 ∈ T do

Traverse({𝑡 }) ;

return ΔM ;

Match Order Search Tree Result

Figure 3: CSM search tree for Figure 1(c), take

O{𝑢0, 𝑢3, 𝑢1, 𝑢2, 𝑢4} as an example.

exist before deletions. Updates involving isolated vertex insertions
or deletions are typically trivial in the context of CSM, as they do
not affect any valid matches.

To accelerate online enumeration, existing CSM algorithms typi-
cally adopt one or both of the following strategies: auxiliary data
structure (ADS) filtering and/or efficient search-tree traversal. ADS
filtering efficiently narrows down candidate vertices or edges before
search begins, and traversal aims to reduce redundant exploration
during enumeration.

Auxiliary Data Structure Filtering. To reduce the cost of on-
line enumeration, many CSM algorithms utilize ADS that maintain
intermediate metadata to efficiently prune the search space. These
structures typically encode candidate constraints or dynamic state

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Haibin Lai, Sicheng Zhou, Site Fan, and Zhuozhao Li

Table 3: The proportion of time consumption (%) of auxiliary data structure update (ADS Upd) and Find Matches of each

algorithm in the incremental matching process, and algorithm success rate (%), all by query size. GraphFlow does not have an

auxiliary data structure.

Algorithm

Query Size 6 Query Size 7 Query Size 8 Query Size 9 Query Size 10

ADS Find Succ Aux Find Succ Aux Find Succ Aux Find Succ Aux Find Succ
Upd Matches Rate Upd Matches Rate Upd Matches Rate Upd Matches Rate Upd Matches Rate

CaLiG 0.49 99.33 100 3.69 95.28 100 0.64 99.25 99 0.07 99.91 94 0.68 99.30 24
GraphFlow N/A N/A 92 N/A N/A 83 N/A N/A 68 N/A N/A 0 N/A N/A 0
NewSP 0.75 53.64 98 0.17 85.59 94 0.02 98.13 90 0.01 98.62 50 0.01 98.85 30
Symbi 2.57 80.78 93 1.16 91.71 85 0.15 98.94 84 0.13 99.36 1 0.09 99.22 1
TurboFlux 1.80 86.01 87 0.72 94.45 83 0.13 98.99 70 0.09 99.30 6 0.28 97.83 1

transitions to eliminate infeasible matches early. While effective
in reducing redundant computation, most existing ADS designs
are inherently single-threaded and thus difficult to parallelize. We
defer a detailed comparison of representative ADS-based methods
(e.g., [16, 20, 32]) to §6.

Efficient search-tree traversal. Traditional CSM algorithms
typically adopt either join-based or backtracking-based search strate-
gies. Join-based approaches, such as those in Graphflow [15]
and SJ-Tree [6], traverse the search tree in a BFS manner, while
backtracking-based methods like RapidFlow [25] employ DFS
traversal. The NewSP algorithm [18] refines this process by decou-
pling traversal into two operations: CPT (compatible set compu-
tation) and EXP (expansion). CPT adheres to the matching order
to retain DFS-style pruning, whereas EXP defers expansion to re-
duce redundancy and introduces BFS-like flexibility. This hybrid
model improves efficiency by avoiding premature exploration and
balancing pruning with exploration breadth.

3 Motivation and Challenges

In this section, we discuss the limitations of existing CSM algo-
rithms, highlight the challenges, and our paper’s motivation.

3.1 Limitations of Existing CSM Algorithms

CSM has become a critical capability in many real-world appli-
cations, where both the data graph 𝐺 and the query graph 𝑄 are
typically large and complex. For instance, ByteGraph [33], deployed
for financial risk control at ByteDance, performs subgraph match-
ing over dynamic graphs using queries with search depths ranging
from 5 to 10 hops, requiring real-time responsiveness. Similarly,
GeaFlow [21] handles streaming updates on large graphs, as shown
in example experiments on a 1.47-billion-edge graph with up to
10-hop traversals per update.

However, existing CSM algorithms, such as Symbi [20], Tur-
boFlux [16], GraphFlow [15], NewSP [18], and CaLiG [32], struggle
to scale effectively under such demanding conditions. To evaluate
this limitation, we conducted a preliminary study using the Live-
Journal dataset. For each query size (i.e., the number of vertices in
the query graph, ranging from 6 to 10), we generated 100 query
graphs by extracting subgraphs from the data graph. Each algo-
rithm was executed with a one-hour timeout per query, and a run
was considered successful if it completed without errors within the
time limit.

Figure 4 and Table 3 show two key observations: i) Incremental
matching time grows exponentially across all algorithms. For exam-
ple, CaLiG’s average processing time increases from 1.68 × 104ms
at size 6 to 2.82 × 106ms at size 10, a 168× increase. ii) Success
rates degrade substantially. While algorithms perform well at size
6 (e.g., CaLiG: 100%, NewSP: 98%), performance drops markedly at
size 10 (e.g., CaLiG: 24%, GraphFlow: 0%). This inverse relationship
between query size and performance highlights the fundamental
scalability challenge in CSM, underscoring the need for more effi-
cient and parallelizable solutions.

6 7 8 9 10
Query Size

104

105

106

Ti
m

e
(m

s) CaLiG
GraphFlow
NewSP
Symbi
TurboFlux

Figure 4: Computing time of different single-threaded CSM

algorithms running on different query sizes.

3.2 Challenges of Parallelization

Most existing CSM algorithms are designed for single-threaded ex-
ecution on CPUs. This observation motivates exploring parallelism
to improve scalability and throughput. However, parallelizing sub-
graph matching in dynamic settings introduces two key challenges:

Challenge 1: Load imbalance caused by coarse-grained par-

allelism. In static subgraph matching, the search space is derived
from a fixed data and query graph. This allows the full search tree
to be decomposed into a few large, independent tasks, enabling
effective coarse-grained parallelism with good load balance [34].

However, CSM processes high-frequency update streams, where
each update triggers a localized search over a dynamically gen-
erated search tree. These trees vary in size and structure across
updates, and are often highly asymmetric due to aggressive pruning
by auxiliary data structures (e.g., CaLiG [32], DCS [20]). As a result,
tasks differ significantly in complexity: some terminate early due to
pruning, while others require deep exploration. This leads to frag-
mented and unbalanced workloads, where some threads finish early

ParaCOSM: A Parallel Framework for Continuous Subgraph Matching ICPP ’25, September 08–11, 2025, San Diego, CA, USA

while others remain active, leaving CPU resources underutilized.
Coarse-grained parallelism, which assumes large and predictable
task sizes, fails to adapt to this dynamic and irregular workload,
resulting in poor real-time load distribution.

Challenge 2: Bottleneck caused by sequential auxiliary

data structure updates.Auxiliary data structures such asDCG [16]
and DCS [20] play a central role in pruning the search space and
improving efficiency in CSM algorithms. However, these structures
are typically designed for single-threaded use and do not support
concurrent updates. In a multi-threaded environment, this design
becomes a bottleneck: threads must serialize access to the shared
structure, which stalls progress and limits scalability.

3.3 Opportunity

We identify two key opportunities for parallelization in CSM.
The first opportunity lies within a single graph updateΔ𝐺 , where

the local search tree can be explored in parallel—referred to as
inner-update parallelism. The second lies across multiple graph
updates, where independent updates can be processed concurrently
in batches—termed inter-update parallelism. These two dimensions
naturally align with the structure of CSM: each update triggers an
independent search process (inner-update), while many such up-
dates can be handled concurrently (inter-update). Leveraging both
forms of parallelism can substantially improve system throughput.

Inner-update parallelism. Within each update, the structure
of the search tree T in CSM offers unique opportunities for load bal-
ancing. Our analysis in Table 3 shows that the findmatch phase dom-
inates the total computation time (often exceeding 90%), whereas
auxiliary data structure updates contribute minimally.

Each node in T represents a computational unit, forming mod-
ular subtrees that can be executed independently. This property
enables decomposition of T into subtasks that can be dynamically
assigned to threads, ensuring balanced workload distribution.

Inter-update parallelism.We observe a key statistical property
of real-world graph workloads: the vast majority of graph updates
do not affect the matching results. We refer to such updates as safe
updates, in contrast to unsafe updates, which may alter the match
set ΔM.

To quantify this property, we analyzed four widely used datasets,
LSBench, LiveJournal, Orkut, and Amazon, and generated 100 ran-
dom query graphs per query size. As shown in Table 4, over 98.4%
of updates are classified as safe, indicating that unsafe updates are
exceedingly rare in practice. This presents a significant opportu-
nity for parallelism: by dynamically classifying updates as safe or
unsafe at runtime, we can process safe updates in parallel without
compromising correctness. Since unsafe updates are infrequent,
they can be processed sequentially to ensure result consistency.
This hybrid strategy enables efficient inter-update parallelism and
achieves substantial speedups in high-throughput CSM systems.

4 ParaCOSM Design

To accelerate CSM, we propose ParaCOSM, a general-purpose
framework that automatically parallelizes existing single-threaded
CSM algorithms conforming to the model described in §2.2, includ-
ing algorithms such as NewSP, CaLiG, and Symbi.

Table 4: Average of unsafe update percentage (%).

Dataset

Query Size

6 7 8 9 10

LSBench 1.0794 1.5688 1.1622 0.4257 0.3192
LiveJournal 0.3028 0.3618 0.3848 0.3266 0.3057
Orkut 0.0010 0.0010 0.0010 0.0012 0.0011
Amazon 0.5356 0.6759 0.5249 0.5254 0.5724

As illustrated in Figure 5, ParaCOSM allows users to easily inte-
grate their own CSM algorithms by providing two key functions: i)
a search-tree traversal procedure, which is embedded into the inner-
update executor; ii) a custom filtering method, which is embedded
into the inter-update executor.

Once these functions are provided, ParaCOSM manages all par-
allelization details automatically. Given a data graph𝐺 , query graph
𝑄 , and a stream of updates ΔG, ParaCOSM orchestrates parallel
execution and maintains the corresponding enumeration results
alongside the evolving graph.

ParaCOSM adopts a two-level parallelism strategy with two
dedicated executors: an inner-update executor for parallelizing
search tree exploration within each update, and an inter-update

executor for batch processing of multiple updates.

Enum
Result

Matching
Order

 User Defined CSM
Algorithm ParaCOSM

Task
Spilt

KernelBacktracking
Kernel

Join-based
Kernel

Self-Defined
Kernel

Search Tree
Traversal Kernel

Degree
Filtering

Self-Defined
Filtering

Index
Filtering

Label
Filtering

Safe/Unsafe Classifier

Batch
Executor

Inner-Update Parallel Executor

Inter-Update Parallel Executor

Enumeration
Kernel

Search Tree
Exploration

Auxiliary Data
Structure

Filtering Data
Graph

Storage

Data Graph Query Graph Data Stream

Figure 5: ParaCOSM architecture.

4.1 Inner-update Parallelism

To address the load imbalance challenge due to irregular match
orders and aggressive pruning by auxiliary structures A, we intro-
duce inner-update parallelism—a fine-grained, task-based par-
allel mechanism that accelerates single-threaded CSM algorithms
without altering their core logic. As illustrated in Algorithm 2, the
inner-update executor operates in two phases:

Initialization Phase: The executor performs a breadth-first
traversal of the search tree T to identify root-level candidate sets
and decompose the search space into independent subtrees. Each
subtree is treated as a subtask and enqueued into a concurrent task
queue 𝐶𝑄 . Once enough subtasks are generated, the main thread
dispatches them to worker threads and transitions to the next phase.

Parallel Execution Phase: Each worker processes its assigned
subtask by performing local enumeration, directly reusing the logic
of existing single-threaded CSM algorithms. To ensure load balance,

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Haibin Lai, Sicheng Zhou, Site Fan, and Zhuozhao Li

workers monitor the system and dynamically offload remaining
subtasks to 𝐶𝑄 when idle threads are detected. This adaptive task-
sharing mechanism enables fine-grained parallelism, even under
skewed or unpredictable workloads.

Algorithm 2: Inner-update Executor
Input: Data graph 𝐺 , root of search tree 𝑟𝑜𝑜𝑡 , maximum

depth𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ
Output: Incremental matching results
Global Variables:

SPILT_DEPTH // defined depth for spilting

𝐶𝑄 ← ∅ // Concurrent task queue

𝑇 ← {𝑡ℎ𝑟𝑒𝑎𝑑1, 𝑡ℎ𝑟𝑒𝑎𝑑2, . . . , 𝑡ℎ𝑟𝑒𝑎𝑑𝑛𝑢𝑚} // Thread pool

Initialization (main thread):

𝐶𝑄.push(𝑆𝑒𝑎𝑟𝑐ℎ_𝑇𝑟𝑒𝑒 (𝑒,O)) ;
while |𝐶𝑄 | < 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 do

foreach 𝑡𝑎𝑠𝑘 ∈ 𝐶𝑄 do

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← Traverse_Next_Layer(𝑡𝑎𝑠𝑘) ;
𝐶𝑄.push(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) ;

Parallel Execution:

foreach 𝑡ℎ𝑟𝑒𝑎𝑑 ∈ 𝑇 in parallel do
while 𝐶𝑄 ≠ ∅ do

𝑡𝑎𝑠𝑘 ← 𝐶𝑄.pop() ;
Parallel_Find_Matches(𝑡𝑎𝑠𝑘) ;
Report(𝑟𝑒𝑠𝑢𝑙𝑡) ;

Function Parallel_Find_Matches(𝑡𝑎𝑠𝑘):
if 𝑡𝑎𝑠𝑘.𝑑𝑒𝑝𝑡ℎ < 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ then

𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 ← Traverse_Next_Layer(𝑡𝑎𝑠𝑘) ;
if HasIdleThreads() and 𝐶𝑄.𝑖𝑠_𝑒𝑚𝑝𝑡𝑦 () and
𝑡𝑎𝑠𝑘.𝑑𝑒𝑝𝑡ℎ < 𝑆𝑃𝐼𝐿𝑇_𝐷𝐸𝑃𝑇𝐻 then

𝐶𝑄.push(𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠) ;
else

Perform the same search as the single-threaded
function Traverse
foreach 𝑠𝑢𝑏𝑡𝑎𝑠𝑘 ∈ 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 do

𝑟𝑒𝑠𝑢𝑙𝑡 ←
Parallel_Find_Matches(𝑠𝑢𝑏𝑡𝑎𝑠𝑘) ;

Our method effectively addresses load imbalance by distributing
search tree subtasks dynamically based on runtime thread availabil-
ity. Unlike static task allocation, which struggles with unpredictable
workloads in CSM, our fine-grained task splitting ensures that com-
putational resources are fully utilized.

4.2 Inter-update Parallelism

As mentioned earlier, a large proportion of updates in real-world
workloads are safe, meaning they do not affect the matching results
when processed in isolation. To leverage this, we propose inter-
update parallelism, which enables batch processing of update
streams. However, implementing inter-update parallelism faces two
key challenges: i) efficiently classifying updates as safe or unsafe,

and ii) safely executing updates in parallel without compromising
correctness.

To address these challenges, ParaCOSM introduces two compo-
nents: an update type classifier and a batch executor. The classifier
determines whether an update can be safely processed in parallel,
while the executor schedules and applies updates accordingly.

Update type classifier. The update type classifier determines
whether a given update Δ𝐺 can be processed in parallel without
interfering with others in the same batch. It applies a three-stage
filtering process:
• Label filtering: The labels of the two endpoints of the updated
edge 𝑣1 and 𝑣2 must match the corresponding query vertices 𝑢1
and 𝑢2, respectively.
• Degree filtering: The degrees of 𝑣1 and 𝑣2 must not be smaller
than those of 𝑢1 and 𝑢2 to preserve the matching feasibility.
• Candidate filtering:. The update must not impact the auxiliary
data structureA. SinceA typically indexes neighborhood struc-
tures, candidate sets, or summaries to accelerate pruning, updates
that modify it may introduce side effects and invalidate concur-
rent matching. Thus, such updates are classified as unsafe and
deferred.
As a result, the classifier returns true for safe updates and false

for unsafe ones. Safe updates are forwarded directly to the batch
executor for parallel execution, while unsafe ones are isolated for
sequential handling.

Batch executor. The batch executor applies a sequence of up-
dates ΔG to the dynamic graph 𝐺 while maximizing parallelism
and preserving correctness. Its key principle is to decouple update
classification from application, enabling aggressive parallelism for
safe updates and controlled sequential fallback for unsafe ones. The
process comprises three stages:

Parallel classification and execution: As illustrated in Figure 6,
each update Δ𝐺 ∈ ΔG is concurrently passed to the classifier by 𝑘
worker threads. Safe updates are immediately applied to the graph
𝐺 in place, with no need for locking or synchronization, since they
do not modify A or affect other ongoing updates.

Detecting unsafe updates: When an update is classified as unsafe,
it is excluded from the parallel phase and handled in a sequential
pass. Importantly, the appearance of an unsafe update invalidates
the safety assumptions of all subsequent updates in the current
batch. Therefore, once an unsafe update is detected, all remaining
updates are deferred to the next batch and re-evaluated after𝐺 and
A are updated. Unsafe updates are then processed sequentially by
the inner-update executor to ensure correctness and consistency.

Batch coordination: The main loop maintains a pool of unpro-
cessed updates and dispatches them in batches of size 𝑘 . After each
round, the executor checks the classifier flags. If all updates are safe,
the batch is completed. Otherwise, the appearance of an unsafe
update triggers a switch to sequential mode, and all subsequent
updates are deferred to preserve consistency.

4.3 Theoretical Analysis

Overall speedup analysis. We analyze the theoretical speedup
of ParaCOSM by modeling the time cost of CSM under parallel
execution. Let |ΔG| be the number of updates, and let 𝛾 denote the
ratio of safe updates. Denote the time for auxiliary data structure

ParaCOSM: A Parallel Framework for Continuous Subgraph Matching ICPP ’25, September 08–11, 2025, San Diego, CA, USA

1

C
lassifier

2
3
4
5

1
2
3
4
5

1

C
lassifier

2
3
4
5

1
2
3
4
5

Executor

C
lassifier

5
6
7
8
9

1 New update
1 Safe update
1 Unsafe update

Figure 6: Safe/unsafe classifier. The executor is responsi-

ble for updating 𝐺 and A and finding incremental matches.

Batch 𝑛: all updates are classified as safe, so the add edge

executor is not invoked. Batch 𝑛 + 1: updates 1-3 are safe and

4 is unsafe. So update 4 invokes the add edge executor, and

update 5, which is after an unsafe update, is moved to batch

𝑛 + 2.

maintenance as 𝑇𝐴𝐷𝑆 , and the time for match enumeration as 𝑇𝐹𝑀 .
Let𝑀 and 𝑁 be the number of threads for ADS update maintenance
and match searching, respectively. Assuming ideal linear scalability
(i.e., perfect speedup proportional to thread count), the total runtime
of our parallel framework is:

𝑇𝑐𝑠𝑚 = |ΔG|
[
(1 − 𝛾)

(
𝑇𝐴𝐷𝑆 +

𝑇𝐹𝑀

𝑁

)
+ 𝛾𝑇𝐴𝐷𝑆

𝑀

]
(1)

= |ΔG|
[(
1 + 𝛾

(
1
𝑀
− 1

))
𝑇𝐴𝐷𝑆 +

1 − 𝛾
𝑁

𝑇𝐹𝑀

]
(2)

This expression shows the influence of the proportion of safe
updates on the total computing time: unsafe updates incur both
𝑇𝐴𝐷𝑆 and 𝑇𝐹𝑀 costs, while safe updates only require parallelized
auxiliary updates.

Reference values. For different CSM algorithms, the values of
𝑇𝐴𝐷𝑆 and 𝑇𝐹𝑀 are listed in Table 1. The following example shows
how to compute the theoretical optimal speedup ratio using the
above expression. Suppose 𝑁 = 10, 𝑀 = 10, and 𝛾 = 0.4. The
runtime simplifies to:

𝑇𝑐𝑠𝑚 = |Δ𝐺 | (0.64𝑇𝐴𝐷𝑆 + 0.06𝑇𝐹𝑀) (3)
As the proportion of safe updates 𝛾 increases, the framework bene-
fits more from update parallelism (𝑀), while the impact of matching
(𝑇𝐹𝑀) diminishes through matching parallelism (𝑁).

Safe update ratio analysis. Here we use label filtering in three-
stage filtering to theoretically estimate the number of safe updates.
Consider an edge insertion into the dynamic graph 𝐺 . For a safe
update, the inserted edge does not match any edge in𝑄 . Both graphs
have labeled vertices and edges, with vertex label set 𝐿𝑉 and edge
label set 𝐿𝐸 . Consider inserting an edge 𝑒1 = (𝑣1, 𝑣2) into 𝐺 . The
update is unsafe if the label triple (𝐿(𝑣1), 𝐿(𝑣2), 𝐿(𝑒1)) matches that
of some edge in 𝐸 (𝑄). Assuming uniform label distribution, the
probability that 𝑒1 matches a specific edge in 𝐸 (𝑄) is:

𝑃 (match) = 1
|𝐿(𝐸) | ×

1
|𝐿(𝑉) | ×

1
|𝐿(𝑉) | =

1
|𝐿(𝐸) | |𝐿(𝑉) |2

Thus, the probabilities of an unsafe and safe update are:

𝑃 (unsafe) = |𝐸 (𝑄) | × 1
|𝐿(𝐸) | |𝐿(𝑉) |2

=
|𝐸 (𝑄) |

|𝐿(𝐸) | |𝐿(𝑉) |2

𝑃 (safe) = 1 − |𝐸 (𝑄) |
|𝐿(𝐸) | |𝐿(𝑉) |2

We can calculate it by substituting the metadata of the LiveJournal
dataset into this expression using an query graph with 6 edges:

𝑃 (unsafe) = 6
302 · 1

= 0.677%, 𝑃 (safe) = 99.33%.

Hence, the probability of a safe update is at least 99.33%, indicating
that safe updates are highly likely in practical scenarios.

5 Experiments

We implement five CSM algorithms: CaLiG, GraphFlow, NewSP,
Symbi, and TurboFlux, into parallel versions using ParaCOSM1

and evaluate their performance. All algorithms are implemented in
C++, compiled with the Intel icpx compiler.

5.1 Experimental Setup

Testbed. We conducted the evaluation on a machine with an Intel
Xeon Platinum 8380 CPU (80 physical cores / 160 threads), 250 GB
of memory, running Ubuntu 22.04.

Datasets.We selected four representative datasets, ranging in
size from KB to GB, and with different label and degree charac-
teristics. The Amazon dataset is a product co-purchasing network
collected from the Amazon website. The LiveJournal is a large-scale
online community network. The LSBench is a synthetic dynamic
social graph generated by the Linked Stream Benchmark. TheOrkut
dataset is a social network from a former Google service. Previ-
ous CSM study [26] has sampled insertion graphs by randomly
sampling 10% edges from the original graphs for Amazon, LiveJour-
nal, and LSBench. So we followed this way to sample from Orkut.
Detailed graph information is summarized in Table 5.

Table 5: Summary of Datasets

Dataset |𝑉 | |𝐸 | |𝐿 (𝑉) | |𝐿 (𝐸) | 𝑑 (𝐺) = 2|𝐸 |
|𝑉 |

Amazon 403,394 2,433,408 6 1 12.06
LiveJournal 4,847,571 42,841,237 30 1 17.68
LSBench 5,210,099 20,270,676 1 44 7.78
Orkut 3,072,441 117,185,083 20 20 20

Query Generation. Following previous studies [16, 26], we gen-
erate query graphs by extracting subgraphs from the data graph
randomly. Specifically, for each dataset, we construct query graphs
with vertex counts of 6, 7, 8, 9, and 10. For each query size, we gen-
erate 100 query graphs by initiating random walks from randomly
selected seed nodes.

Metrics. All reported times in this section measure incremen-
tal matching time. Success rate is defined as the percentage of
queries completed within one hour, with queries taking longer be-
ing marked as timeouts. For fairness, when comparing with CaLiG,
which does not support edge labels, we remove edge labels from all
datasets during CaLiG evaluation. Unless otherwise specified, all
experiments were tested multiple times, and the average runtime
was reported.

1open source in https://github.com/SUSTech-HPCLab/ParaCOSM.git

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Haibin Lai, Sicheng Zhou, Site Fan, and Zhuozhao Li

CaLiG

GraphFlow
NewSP

Symbi

TurboFlux

103

105

107
Ti

m
e

(m
s)

1.5× 4.1× 1.2× 2.2× 5.4×

Amazon

CaLiG

GraphFlow
NewSP

Symbi

TurboFlux

4.5×
3.1× 1.6× 2.7× 5.8×

LiveJournal

CaLiG

GraphFlow
NewSP

Symbi

TurboFlux

TOTO 2.3× 1.3× 1.5× 2.1×
LSBench

CaLiG

GraphFlow
NewSP

Symbi

TurboFlux

TOTO
6.0× 30.2× 6.1× 9.5×

Orkut
Single
Parallel

Figure 7: The speedup ratio of ParaCOSM algorithms with 32 threads to single-threaded algorithms on different datasets. TO

means timeouts.

5.2 Overall Comparison

Overall time efficiency. As shown in Figure 7, we report the
speedup achieved by ParaCOSM with 32 threads, compared to
their original single-threaded implementations. Experiments were
conducted on four datasets.

The results demonstrate that ParaCOSM provides significant ac-
celeration across all tested algorithms and datasets. Notably, Graph-
Flow and TurboFlux show the highest improvements, achieving
speedups of 3× to 6× on the Amazon and LiveJournal datasets, over
2× on LSBench, and up to 30.2× and 9.5× on the Orkut dataset,
respectively. Other algorithms also have benefits, with speedups
ranging from 1× to 7× depending on the dataset.

It is worth noting that the acceleration on LSBench is generally
less pronounced compared to other datasets. This may be attributed
to LSBench having the lowest average degree 𝑑 (𝐺), which leads to
frequent expansion of the search tree and higher overhead from
managing the concurrent task queue. Additionally, CaLiG consis-
tently fails to complete within the time limit on LSBench. Beyond
the structural properties of the graph, a key contributing factor is
that the original CaLiG implementation does not support edge label
matching—an essential feature for LSBench, which contains a large
number of edge-labeled edges in a sizable graph.

Time efficiency on large query graphs. We evaluate the per-
formance of ParaCOSMwith 32 threads on query graphs of varying
sizes using the LiveJournal dataset. Figure 8 shows the speedup
computed for successful queries versus the query size for differ-
ent parallelized algorithms . Our parallel implementation exhibits
substantial speedups across all algorithms. Notably, our proposed
three-stage filtering technique proves especially effective for query
sizes 6 and 7, achieving significant speedup in these cases. For
larger query sizes, our parallel algorithm still delivers consistent
and effective acceleration.

6 7 8 9 10
Query Size

10
0

10
1

10
2

S
pe

ed
up

CaLiG
GraphFlow

NewSP
Symbi
TurboFlux

Figure 8: ParaCOSM with 32 threads speedup on big query

graphs under the time limit.

In addition to reducing runtime, ParaCOSM also significantly
improves the success rate for large queries. As shown in Table 6,
we report the percentage of successful runs for each algorithm

with ParaCOSM and query size. When the query size is below 8,
nearly all algorithms reach close to 100% success with ParaCOSM.
Even for more complex queries, ParaCOSM consistently improves
success rates. Notably, Symbi sees a 71% improvement at query size
9 after adopting our approach.

Table 6: Success rate of parallel CSM algorithms on LiveJour-

nal with 32 threads. “+” and “−” indicate the change in success

rate compared to their single-threaded results in Table 3.

Alg.

(Parallel)

Query Size

6 7 8 9 10

CaLiG 100 (+0) 99 (-1) 96 (-3) 84 (-10) 40 (+16)
GraphFlow 100 (+8) 97 (+14) 92 (+24) 11 (+11) 0 (+0)
NewSP 99 (+1) 95 (+1) 98 (+8) 55 (+5) 45 (+15)
Symbi 100 (+7) 99 (+14) 92 (+6) 72 (+71) 13 (+12)
TurboFlux 100 (+13) 98 (+15) 94 (+24) 32 (+26) 0 (-1)

Scalability. We evaluate the scalability of ParaCOSM on the
LiveJournal. For each thread configuration (8, 16, 32, 64, and 128
threads), we randomly select 10 distinct query graphs. Speedup is
computed relative to the single-threaded baseline. The results are
presented in Figure 9.

8 16 32 64 128
Number of Threads

5

10

15

S
pe

ed
up

CaLiG
GraphFlow
NewSP

Symbi
TurboFlux

Figure 9: Speedup of ParaCOSM with different number of

threads.

The experiments demonstrate strong scaling characteristics across
all evaluated algorithms. TurboFlux achieves the highest improve-
ment, scaling from 3.4× (8 threads) to 18.6× (128 threads), with
especially large gains at higher thread counts. GraphFlow shows
steady scalability, rising from 3.9× to 13.7× as threads increase.
Symbi and CaLiG show nonlinear scaling behavior: both achieve
their peak speedups (7.0× and 3.2×, respectively) at 32 threads, but
the performance gain plateaus or declines beyond that point. NewSP
demonstrates more limited scalability, reaching up to 2.1× speedup
at 128 threads. Overall, these results confirm that ParaCOSM main-
tains high parallel efficiency as the number of threads increases.

ParaCOSM: A Parallel Framework for Continuous Subgraph Matching ICPP ’25, September 08–11, 2025, San Diego, CA, USA

The particularly strong performance in TurboFlux and GraphFlow
underscores the effectiveness of our parallelization strategies and
their suitability for highly concurrent environments.

5.3 Breakdown Comparison

Inner update load balancing. To evaluate the effectiveness of the
load balancing strategy in inner-update parallelism, we run experi-
ments on the LiveJournal with 32 threads. For each run, we recorded
the execution time of each thread under both load-balanced and un-
balanced conditions. Figure 10 presents the cumulative distribution
function (CDF) of the per-thread execution times.

The results reveal that load balancing greatly improves workload
distribution. Without it, some threads finish in about 10 seconds
while others take up to 50 seconds, indicating severe task skew and
underutilized resources. In contrast, with load balancing enabled,
most threads complete in roughly 20 seconds, reflecting a more
uniform distribution. This leads to better resource utilization and
shorter total search time.

0 10000 20000 30000 40000 50000
Time (ms)

0.00

0.25

0.50

0.75

1.00

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Balanced Load
Unbalanced Load
Balanced Min
Balanced Max
Unbalanced Min
Unbalanced Max

Figure 10: CDF of thread execution time for load-balanced

vs. unbalanced cases. Algorithm is GraphFlow.

Inter update efficiency. Figure 11 illustrates the effectiveness
of the inter-update parallelism strategy described in §4.2. We con-
ducted experiments on the Orkut and measured the execution times
before and after applying the inter-update parallel mechanism with
32 threads. The results show that this mechanism provides sub-
stantial acceleration across all tested algorithms, with speedups
exceeding 3.47× in every case. Notably, Symbi achieves a 7.39×
improvement, demonstrating particularly strong responsiveness to
inter-update parallelism.

CaLiG Graphflow NewSP Symbi Turboflux
0

5000

10000

15000

20000

Ti
m

e
(m

s) 4.06× 3.52× 3.47×
7.39× 4.50×

Without Inter-Para With Inter-Para

Figure 11: Inter-update mechanism speedup.

Using the same experimental setup, we further evaluated the
efficiency of the proposed three-stage filtering strategy. The results
are shown in Figure 12. Most CSM algorithms typically apply label
and degree matching as basic pruning steps. By using these two
filters to classify edges as safe or unsafe for parallel processing, we
find that more than 99.6% of edges can be classified as safe and
processed in parallel.

The remaining candidate edges, those that satisfy both label and
degree filter, are then passed through the auxiliary data structure

With
Label

With
Degree

TurboFlux Symbi CaLiG
0.20

0.25

0.30

0.35

R
em

ai
ni

ng
 E

dg
e

R
at

io
 (%

)

0.32%
() 0.31%

(1.03×)
0.26%
(1.22x)

0.23%
(1.42×)

0.29%
(1.12x)

Figure 12: Three-stage filtering pruning effectiveness.

(ADS) filters. Across all three evaluated algorithms (TurboFlux,
Symbi, and CaLiG), the ADS filters prune more than 99.7% of the
remaining edges. These results validate the high effectiveness of
our three-stage filtering strategy in enabling efficient and safe inter-
update parallelism.

6 Related Work

Streaming Graph Computation.Many real-world applications
require processing dynamically evolving graphs. RisGraph [10]
is a real-time streaming system that supports low-latency analy-
sis (e.g., BFS, SSSP) per update with high throughput. It achieves
inter-update parallelism via domain-specific concurrency control,
classifying updates as safe or unsafe for parallel execution. Tesser-
act [4] performs pattern mining on evolving graphs by efficiently
distributing updates to worker nodes. KickStarter [29] accelerates
convergence of monotonic algorithms via trimming and approxima-
tion. LSGraph [22] improves memory efficiency with hierarchical
indexing and locality-aware updates. However, these systems do not
target complex pattern queries in continuous subgraph matching,
which remains the focus of our work.

Static subgraphmatching. Subgraphmatching has beenwidely
studied since Ullmann’s algorithm [28]. Later methods, including
VF2 [7], GraphQL [13], SPATH [24], TurboISO [12], CFL [3], and
CECI [2], improve performance through optimized matching orders
and pruning. However, these approaches target static graphs, while
our focus is dynamic graph scenarios.

Continuous subgraph matching. Early CSM approaches like
IncIsoMat [8], GraphFlow [15], and TurboFlux [16] focus on incre-
mental computation via affected regions, worst-case joins, and aux-
iliary data structures. RapidFlow [25], newSP [18], and CaLiG [32]
improve pruning or decomposition strategies but remain single-
threaded. Mnemonic [1] assigns a single thread to each update,
achieving batch-level but coarse-grained parallelism. GPU-based
methods [23, 30] offer speedups at high hardware and develop-
ment cost. In contrast, ParaCOSM enables efficient CPU-based
intra-update parallelism with minimal algorithm modification.

7 Conclusion

In this paper, we proposed ParaCOSM, a parallel framework for
accelerating Continuous Subgraph Matching (CSM). ParaCOSM
exploits both inner-update and inter-update parallelism to improve
performance. The inner-update executor employs fine-grained task
decomposition to achieve effective load balancing, while the inter-
update executor uses a three-stage filtering strategy to reduce redun-
dant computation. Extensive experiments show that ParaCOSM
consistently outperforms single-threaded baselines across diverse

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Haibin Lai, Sicheng Zhou, Site Fan, and Zhuozhao Li

datasets and query sizes. A detailed breakdown analysis confirms
the contribution of each component to overall performance gains.

Acknowledgments

We thankDr. Shengxin Liu for his valuable suggestions on this work.
This work was supported in part by the National Natural Science
Foundation of China Grant No. 62202216, the Guangdong Basic and
Applied Basic Research Foundation Grant No. 2023A1515010244,
and the Shenzhen Science and Technology ProgramGrant 202311211
01752002. This work was also supported by Center for Computa-
tional Science and Engineering at Southern University of Science
and Technology.

References

[1] Bibek Bhattarai and Howie Huang. 2022. Mnemonic: A Parallel Subgraph Match-
ing System for Streaming Graphs. In 2022 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). 313–323.

[2] Bibek Bhattarai, Hang Liu, and H. Howie Huang. 2019. CECI: Compact Em-
bedding Cluster Index for Scalable Subgraph Matching. In Proceedings of the
2019 International Conference on Management of Data (Amsterdam, Netherlands)
(SIGMOD ’19). ACM, 1447–1462.

[3] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient
Subgraph Matching by Postponing Cartesian Products. In Proceedings of the 2016
ACM SIGMOD International Conference on Management of Data. 1199–1214.

[4] Laurent Bindschaedler, Jasmina Malicevic, Baptiste Lepers, Ashvin Goel, and
Willy Zwaenepoel. 2021. Tesseract: distributed, general graph pattern mining on
evolving graphs. In Proceedings of the Sixteenth European Conference on Computer
Systems (Online Event, United Kingdom) (EuroSys ’21). ACM, 458–473.

[5] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro. 2013. A subgraph iso-
morphism algorithm and its application to biochemical data. BMC bioinformatics
14, Suppl 7 (2013), S13.

[6] Sutanay Choudhury, Lawrence Holder, George Chin, Khushbu Agarwal, and
John Feo. 2015. A Selectivity based approach to Continuous Pattern Detection in
Streaming Graphs. arXiv:1503.00849 [cs.DB] https://arxiv.org/abs/1503.00849

[7] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A
(Sub)Graph Isomorphism Algorithm for Matching Large Graphs. IEEE PAMI 26,
10 (2004), 1367–1372.

[8] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan, Xin Wang, and Yinghui Wu.
2011. Incremental graph pattern matching. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data. 925–936.

[9] Wenfei Fan, Xin Wang, and Yinghui Wu. 2013. Incremental graph pattern match-
ing. ACM Trans. Database Syst. 38, 3, Article 18 (Sept. 2013), 47 pages.

[10] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao
Han, and Wenguang Chen. 2021. RisGraph: A Real-Time Streaming System for
Evolving Graphs to Support Sub-millisecond Per-update Analysis at Millions
Ops/s. In Proceedings of the 2021 International Conference on Management of Data
(Virtual Event, China) (SIGMOD ’21). ACM, 513–527.

[11] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy, Volodymyr
Zhabiuk, Quannan Li, and Jimmy Lin. 2014. Real-time twitter recommenda-
tion: online motif detection in large dynamic graphs. Proc. VLDB Endow. 7, 13
(Aug. 2014), 1379–1380.

[12] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turbo iso: towards
ultrafast and robust subgraph isomorphism search in large graph databases. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data. 337–348.

[13] Huahai He and Ambuj K. Singh. 2008. Graphs-at-a-time: query language and
access methods for graph databases. In SIGMOD. 405–418.

[14] M. Idris, M. Ugarte, S. Vansummeren, et al. 2020. General dynamic Yannakakis:
conjunctive queries with theta joins under updates. The VLDB Journal 29, 4
(2020), 619–653.

[15] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and
Semih Salihoglu. 2017. Graphflow: An Active Graph Database. In Proceedings of
the 2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). ACM, 1695–1698.

[16] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sungpack Hong,
Hassan Chafi, Hyungyu Shin, and Geonhwa Jeong. 2018. TurboFlux: A Fast
Continuous Subgraph Matching System for Streaming Graph Data. In Proceedings
of the 2018 International Conference on Management of Data (Houston, TX, USA)
(SIGMOD ’18). ACM, 411–426.

[17] Sofiane Lagraa, Martin Husák, Hamida Seba, Satyanarayana Vuppala, Radu State,
and Moussa Ouedraogo. 2024. A review on graph-based approaches for network

security monitoring and botnet detection. International Journal of Information
Security 23, 1 (2024), 119–140.

[18] Ziming Li, Youhuan Li, Xinhuan Chen, Lei Zou, Yang Li, Xiaofeng Yang, and
Hongbo Jiang. 2024. NewSP: A New Search Process for Continuous Subgraph
Matching over Dynamic Graphs. In 2024 IEEE 40th International Conference on
Data Engineering (ICDE). IEEE, 3324–3337.

[19] Zhiheng Lin, Ke Meng, Changjie Xu, Weichen Cao, and Guangming Tan. 2025.
Jupiter: Pushing Speed and Scalability Limitations for Subgraph Matching on
Multi-GPUs. In Proceedings of the Twentieth European Conference on Computer
Systems (Rotterdam, Netherlands) (EuroSys ’25). ACM, 558–572.

[20] Seunghwan Min, Sung Gwan Park, Kunsoo Park, Dora Giammarresi, Giuseppe F.
Italiano, and Wook-Shin Han. 2021. Symmetric continuous subgraph matching
with bidirectional dynamic programming. Proc. VLDB Endow. 14, 8 (April 2021),
1298–1310.

[21] Zhenxuan Pan, Tao Wu, Qingwen Zhao, Qiang Zhou, Zhiwei Peng, Jiefeng Li,
Qi Zhang, Guanyu Feng, and Xiaowei Zhu. 2023. GeaFlow: A Graph Extended
and Accelerated Dataflow System. Proc. ACM Manag. Data 1, 2, Article 191 (June
2023), 27 pages.

[22] Hao Qi, Yiyang Wu, Ligang He, Yu Zhang, Kang Luo, Minzhi Cai, Hai Jin, Zhan
Zhang, and Jin Zhao. 2024. LSGraph: A Locality-centric High-performance
Streaming Graph Engine. In Proceedings of the Nineteenth European Conference
on Computer Systems (Athens, Greece) (EuroSys ’24). ACM, 33–49.

[23] Linshan Qiu, Lu Chen, Hailiang Jie, Xiangyu Ke, Yunjun Gao, Yang Liu, and Zetao
Zhang. 2024. GPU-Accelerated Batch-Dynamic Subgraph Matching . In 2024
IEEE 40th International Conference on Data Engineering (ICDE). IEEE Computer
Society, 3204–3216.

[24] Xuguang Ren and Junhu Wang. 2015. Exploiting vertex relationships in speeding
up subgraph isomorphism over large graphs. Proceedings of the VLDB Endowment
8, 5 (2015), 617–628.

[25] Shixuan Sun, Xibo Sun, Bingsheng He, and Qiong Luo. 2022. RapidFlow: an
efficient approach to continuous subgraph matching. Proc. VLDB Endow. 15, 11
(July 2022), 2415–2427.

[26] Xibo Sun, Shixuan Sun, Qiong Luo, and Bingsheng He. 2022. An in-depth study
of continuous subgraph matching. Proceedings of the VLDB Endowment 15, 7
(2022), 1403–1416.

[27] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012.
Efficient subgraph matching on billion node graphs. Proc. VLDB Endow. 5, 9 (May
2012), 788–799.

[28] J. R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1,
31–42.

[29] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and Accurate
Computations on Streaming Graphs via Trimmed Approximations. In Proceedings
of the Twenty-Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Xi’an, China) (ASPLOS ’17). ACM,
237–251.

[30] Yihua Wei and Peng Jiang. 2024. GCSM: GPU-Accelerated Continuous Subgraph
Matching for Large Graphs. In 2024 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 1046–1057.

[31] Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, and Aravind
Sukumaran-Rajam. 2021. cuTS: Scaling Subgraph Isomorphism on Distributed
Multi-GPU Systems Using Trie Based Data Structure. In SC21: International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–13.

[32] Rongjian Yang, Zhijie Zhang, Weiguo Zheng, and Jeffrey Xu Yu. 2023. Fast Con-
tinuous Subgraph Matching over Streaming Graphs via Backtracking Reduction.
Proc. ACM Manag. Data 1, 1, Article 15 (May 2023), 26 pages.

[33] Wei Zhang, Cheng Chen, Qiange Wang, Wei Wang, Shijiao Yang, Bingyu Zhou,
Huiming Zhu, Chao Chen, Yongjun Zhao, Yingqian Hu, Miaomiao Cheng, Meng
Li, Hongfei Tan, Mengjin Liu, Hexiang Lin, Shuai Zhang, and Lei Zhang. 2024.
BG3: A Cost Effective and I/O Efficient Graph Database in Bytedance. In Com-
panion of the 2024 International Conference on Management of Data (Santiago AA,
Chile) (SIGMOD/PODS ’24). ACM, 360–372.

[34] Zhijie Zhang, Yujie Lu, Weiguo Zheng, and Xuemin Lin. 2024. A Comprehensive
Survey and Experimental Study of Subgraph Matching: Trends, Unbiasedness,
and Interaction. Proc. ACM Manag. Data 2, 1, Article 60 (March 2024), 29 pages.

https://arxiv.org/abs/1503.00849
https://arxiv.org/abs/1503.00849

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 CSM Problem Definition
	2.2 General CSM Models

	3 Motivation and Challenges
	3.1 Limitations of Existing CSM Algorithms
	3.2 Challenges of Parallelization
	3.3 Opportunity

	4 ParaCOSM Design
	4.1 Inner-update Parallelism
	4.2 Inter-update Parallelism
	4.3 Theoretical Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Overall Comparison
	5.3 Breakdown Comparison

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

